黄志琦 简历

Zhiqi Huang

中山大学物理与天文学院教授,博导(2016-);天文系主任(2018-);数理教研室主任;物理强基班学术导师;天文社指导老师。曾任国际大型合作实验Planck 的核心组成员(2013-2020);曾参与Euclid,ACT,SPIDER等国际合作实验;目前任SCI 刊物《Universe》特刊 "Cosmic Microwave Background"编辑和SCI刊物 《Galaxies》 专题咨询组委员。
主要研究兴趣为理论和观测宇宙学。2013年,和合作者第一次完整计算了宇宙微波背景辐射中由广义相对论非线性修正产生的非高斯性,这对早期宇宙的原初非高斯性的限制提供了约20%的修正。成果以第一作者论文发表在物理顶级期刊 PRL 上。于2013-2020年在大型国际合作实验Planck里担任核心组成员,于2018年获得欧洲空间局颁发的杰出贡献证书。2016年,写出目前国际上三个通用修改引力玻尔兹曼代码之一。于2020年提出分析晚期宇宙的新工具PAge近似方法,近两年被广泛应用。近几年对哈勃参数疑难问题做出一系列研究。2022年,对准分子复合(三体量子)通道做出了新的估算,推翻了原先认为它可能可以解决哈勃参数疑难的主流观点。
获得国家级青年人才项目支持(2016);主持国家自然科学基金面上项目(2021);国家重点研发项目课题负责人(2020);参与SKA国家重点研发项目课题(2020)。曾获得第一届阿里巴巴全球数学竞赛优胜奖(2018);加拿大的Beatrice and Vincent Tremaine Fellowship(2015);法国的Eurotalents Fellowship(2010);作为Planck卫星实验的核心组成员(总计约100多名)之一共同分享了Gruber Cosmology Prize(2018) 和 Giuseppe and Vanna Cocconi Prize (2019) 等国际奖项。

联系方式
地址: 珠海市香洲区唐家湾镇大学路2号中山大学物理与天文学院,519082
邮箱: huangzhq25@mail.sysu.edu.cn
主页: http://zhiqihuang.top
教育
博士 (2010, 导师: J. Richard Bond, Lev Kofman,专业:天文与天体物理): 多伦多大学
硕士 (2006, 导师: Charles Dyer,专业:天文与天体物理): 多伦多大学
学士 (2004, 学位论文导师: 马中水,专业:物理): 北京大学
初中/高中 (1994-2000): 宁波效实中学
职业
教授,博导(2016迄今): 中山大学物理与天文学院
博士后 (2013-2016): 加拿大 Canadian Institute for Theoretical Astrophysics (CITA)
博士后 (2010-2013): 法国 IPhT, CEA/Saclay
项目与获奖
  • 国家重点研发计划项目的课题负责人 (2020YFC2201602, 2020.12-2025.11)
  • 主持国家自然科学基金面上项目 (12073088, 2021.01-2024.12)
  • 参与国家重点研发SKA专项课题 (2020SKA0110402, 2020.12-2025.11)
  • SCI刊物 《Universe》 特刊编辑
  • SCI刊物 《Galaxies》 专题咨询组委员
  • 2019 Giuseppe and Vanna Cocconi Prize (shared; as a Planck core team member)
  • Gruber Cosmology Prize 2018 (shared; as a Planck core team member)
  • 第一届阿里巴巴全球数学竞赛优胜奖 (2018)
  • 中山大学三校区智力运动会围棋个人冠军(2017)
  • 国家级青年人才项目支持 (QQ, 2016); 中山大学百人计划支持 (2016)
  • 2015 Beatrice and Vincent Tremaine Fellowship
  • Eurotalents Fellowship (2010-2012)
  • CMO金牌,国家集训队,2000
发表的论文
  1. Quantifying the tension between cosmological models and JWST red candidate massive galaxies, Jun-Chao Wang, Zhi-Qi Huang, Lu Huang, Jianqi Liu, Research in Astronomy and Astrophysics 24, 045001, 2024.
  2. Cosmological constraints on neutrino masses in light of JWST red and massive candidate galaxies, Jian-Qi Liu, Zhi-Qi Huang, Yan Su, Research in Astronomy and Astrophysics 24, 045002, 2024.
  3. Revisiting progenitor-age dependence of type Ia supernova luminosity standardization process, Junchao Wang, Zhiqi Huang, Lu Huang, SCIENCE CHINA Physics, Mechanics & Astronomy 66(12), 129511, 2023.
  4. Toward a stellar population catalog in the Kilo Degree Survey: the impact of stellar recipes on stellar masses and star formation rates, Linghua Xie, Nicola R. Napolitano, Xiaotong Guo, Crescenzo Tortora, Haicheng Feng, Antonios Katsianis, Rui Li, Sirui Wu, Mario Radovich, Leslie K. Hunt, Yang Wang, Lin Tang, Baitian Tang, Zhiqi Huang, SCIENCE CHINA Physics, Mechanics & Astronomy 66(12), 129513, 2023.
  5. Tomographic Alcock-Paczynski Method with Redshift Errors, Liang Xiao, Zhiqi Huang, Yi Zheng, Xin Wang, Xiaodong Li, Monthly Notices of the Royal Astronomical Society 518(4), 6253, 2022.
  6. Cosmological forecasts of the CSST photometric and spectroscopic multi-probe surveys, Haitao Miao, Yan Gong, Xuelei Chen, Zhiqi Huang, Xiao-Dong Li, Hu Zhan, Monthly Notices of the Royal Astronomical Society 519(1), 1132, 2022.
  7. Constraints on compact dark matter from lensing of gravitational waves for the third-generation gravitational wave detector, Huan Zhou, Zhengxiang Li, Kai Liao, Zhiqi Huang, Monthly Notices of the Royal Astronomical Society 518, 149, 2022.
  8. Performance forecasts for the primordial gravitational wave detection pipelines for AliCPT-1, Shamik Ghosh, Yang Liu, Le Zhang, et al., Journal of Cosmology and Astroparticle Physics 2022(10), 063, 2022.
  9. Forecasts on CMB lensing observations with AliCPT-1, Jinyi Liu, Zeyang Sun, Jiakang Han et al., SCIENCE CHINA Physics, Mechanics & Astronomy 65(10), 109511, 2022.
  10. Thawing k-essence dark energy in the PAge space, Zhiqi Huang, Communications in Theoretical Physics 74(9), 095404, 2022.
  11. The Galactic interstellar medium has a preferred handedness of magnetic misalignment, Zhiqi Huang, Universe 8(8), 423, 2022.
  12. Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: I. Evidence for thermal energy anisotropy using oriented stacking, M. Lokken, R. Hlozek, A. van Engelen et al., Astrophysical Journal 933(2), 134, 2022.
  13. Revisiting the quasi-molecular mechanism of recombination, Zhiqi Huang, Monthly Notices of the Royal Astronomical Society 513(3), 3368, 2022.
  14. Constraints on the abundance of massive primordial black holes from lensing of compact radio sources, Huan Zhou, Zhengxiang Li, Shuo Cao, Zhiqi Huang, Monthly Notices of the Royal Astronomical Society 513(3), 3627, 2022.
  15. Search for lensing signatures from the latest fast radio burst observations and constraints on the abundance of primordial black holes, Huan Zhou, Zhengxiang Li, Kai Liao, Chenhui Niu, He Gao, Zhiqi Huang, Lu Huang, Bing Zhang, Astrophysical Journal 928(2), 124, 2022.
  16. A Simulation-based Method for Correcting Mode Coupling in CMB Angular Power Spectra, Leung, JSY; Hartley, J ; Nagy, JM et al.., Astrophysical Journal 928(2), 109, 2022.
  17. Cosmological constraints from the density gradient weighted correlation function, Xiaoyuan, Xiao et al., Monthly Notices of the Royal Astronomical Society 513(1), 595, 2022.
  18. A Constraint on Primordial B-Modes from the First Flight of the SPIDER Balloon-Borne Telescope, P. A. R. Ade, M. Amiri, S. J. Benton, et al.., Astrophysical Journal 927(2), 174, 2022.
  19. Constraints on the abundance of primordial black holes with different mass distributions from lensing of fast radio bursts, Huan Zhou, Zhengxiang Li, Zhiqi Huang, He Gao, Lu Huang, Monthly Notices of the Royal Astronomical Society 511(1), 1141, 2022.
  20. The S8 tension in light of updated redshift-space distortion data and PAge approximation, Lu Huang, Zhiqi Huang, Huan Zhou, Zhuoyang Li, SCIENCE CHINA Physics, Mechanics & Astronomy 65(3), 239512, 2022.
  21. High-quality Strong Lens Candidates in the Final Kilo-Degree Survey Footprint, R. Li, N. R. Napolitano, C. Spiniello et al., Astrophysical Journal 923(1), 16, 2021.
  22. The XFaster Power Spectrum and Likelihood Estimator for the Analysis of Cosmic Microwave Background Maps, Gambrel, AE ; Rahlin, AS; Song, X, Astrophysical Journal 922(2), 132, 2021.
  23. A More Accurate Parameterization based on cosmic Age (MAPAge), Lu Huang, Zhiqi Huang, Zhuoyang Li, Huan Zhou, Research in Astronomy and Astrophysics 21(11), 277, 2021.
  24. Statistics of thawing k-essence dark energy models, Zhiqi Huang, Physical Review D 104(10), 103533, 2021.
  25. Reconciling low and high redshift GRB luminosity correlations, Lu Huang, Zhiqi Huang, Xiaolin Luo, Yuhong Fang, Physical Review D 103(12), 123521, 2021.
  26. Reaffirming the Cosmic Acceleration without Supernovae and the Cosmic Microwave Background, Xiaolin Luo, Zhiqi Huang, Qiyue Qian, Lu Huang, Astrophysical Journal 905(1), 53, 2020.
  27. Planck intermediate results. LVI. Detection of the CMB dipole through modulation of the thermal Sunyaev-Zeldovich effect: Eppur si muove II, Y. Akrami, M. Ashdown, C. Baccigalupi et al., Astronomy & Astrophysics 644, A100, 2020.
  28. Design and pre-flight performance of SPIDER 280 GHz receivers, E. C. Shaw, P. A. R. Ade, S. Akers, et al., Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X 11453(2F), 1, 2020.
  29. Planck intermediate results. LV. Reliability and thermal properties of high-frequency sources in the Second Planck Catalogue of Compact Sources, Y. Akrami, M. Ashdown, J. Aumont et al., Astronomy & Astrophysics 644, A99, 2020.
  30. Planck intermediate results. LVII. Joint Planck LFI and HFI data processing, Y. Akrami, K. J. Andersen, M. Ashdown et al., Astronomy & Astrophysics 643, A42, 2020.
  31. Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Y. Akrami, F. Arroja, M. Ashdown et al., Astronomy & Astrophysics 641, A9, 2020.
  32. Planck 2018 results. VIII. Gravitational lensing, N. Aghanim, Y. Akrami, M. Ashdown et al., Astronomy & Astrophysics 641, A8, 2020.
  33. Planck 2018 results. VII. Isotropy and Statistics of the CMB, Y. Akrami, M. Ashdown, J. Aumont et al., Astronomy & Astrophysics 641, A7, 2020.
  34. Planck 2018 results. VI. Cosmological parameters, N. Aghanim, Y. Akrami, M. Ashdown et al., Astronomy & Astrophysics 641, A6, 2020.
  35. Planck 2018 results. V. CMB power spectra and likelihoods, N. Aghanim, Y. Akrami, M. Ashdown et al., Astronomy & Astrophysics 641, A5, 2020.
  36. Planck 2018 results. IV. Diffuse component separation, Y. Akrami, M. Ashdown, J. Aumont et al., Astronomy & Astrophysics 641, A4, 2020.
  37. Planck 2018 results. III. High Frequency Instrument data processing and frequency maps, N. Aghanim, Y. Akrami, M. Ashdown et al., Astronomy & Astrophysics 641, A3, 2020.
  38. Planck 2018 results. II. Low Frequency Instrument data processing, Y. Akrami, F. Argueso, M. Ashdown et al., Astronomy & Astrophysics 641, A2, 2020.
  39. Planck 2018 results. XII. Galactic astrophysics using polarized dust emission, N. Aghanim, Y. Akrami, M. I. R. Alves et al., Astronomy & Astrophysics 641, A12, 2020.
  40. Planck 2018 results. XI. Polarized dust foregrounds, Y. Akrami, M. Ashdown, J. Aumont et al., Astronomy & Astrophysics 641, A11, 2020.
  41. Planck 2018 results. X. Constraints on inflation, Y. Akrami, F. Arroja, M. Ashdown et al., Astronomy & Astrophysics 641, A10, 2020.
  42. Planck 2018 results. I. Overview and the cosmological legacy of Planck, Y. Akrami, F. Arroja, M. Ashdown et al., Astronomy & Astrophysics 641, A1, 2020.
  43. New high-quality strong lens candidates with deep learning in the Kilo Degree Survey, R. Li, N. R. Napolitano, C. Tortora, C. Spiniello, L. V. E. Koopmans, Z. Huang, G. Vernardos, S. Chatterjee, B. Giblin, F. Getman, G. Covone, K. Kuijken, Astrophysical Journal 893(1), 30, 2020.
  44. Band-limited Features in Primordial Power Spectrum Do Not Resolve the Hubble Tension, MiaoXin Liu, Zhiqi Huang, Astrophysical Journal 897(2), 166, 2020.
  45. Can Non-standard Recombination Resolve the Hubble Tension?, Miaoxin Liu, Zhiqi Huang, Xiaolin Luo, Haitao Miao, Naveen K. Singh, Lu Huang, SCIENCE CHINA Physics, Mechanics & Astronomy 63(9), 290405, 2020.
  46. Supernova Magnitude Evolution and PAge Approximation, Zhiqi Huang, Astrophysical Journal Letters 892(2), L28, 2020.
  47. Forecasting Cosmological Bias due to Local Gravitational Redshift, Haoting Xu, Zhiqi Huang, Na Zhang, Yundong Jiang, International Journal of Modern Physics D 28(12), 1950150, 2019.
  48. The Simons Observatory: Astro2020 Decadal Project Whitepaper, Maximilian H. Abitbol, Shunsuke Adachi, Peter Ade et al., BAAS 51(7), 147, 2019.
  49. Revisiting Ryskin's Model of Cosmic Acceleration, Zhiqi Huang, Han Gao, Haoting Xu, Astroparticle Physics 114, 77, 2019.
  50. Flatness without CMB - the Entanglement of Spatial Curvature and Dark Energy Equation of State, Haoting Xu, Zhiqi Huang, Zhenjie Liu, Haitao Miao, Astrophysical Journal 877(2), 107, 2019.
  51. High-redshift Mini-haloes from Modulated Preheating, Zhiqi Huang, Physical Review D 99(10), 103537, 2019.
  52. The Simons Observatory: science goals and forecasts, Peter Ade, James Aguirre, Zeeshan Ahmed et al., Journal of Cosmology and Astroparticle Physics 2019(02), 056, 2019.
  53. Anti-Evaporation of n-dimensional Reissner-Nordström Black Hole, YuHong Fang, Zhiqi Huang, HaiTao Miao, Naveen K Singh, Physical Review D 99(4), 044011, 2019.
  54. The H0 Tension in Non-flat QCDM Cosmology, Haitao Miao, Zhiqi Huang, Astrophysical Journal 868(1), 20, 2018.
  55. Planck intermediate results. LIV. The Planck Multi-frequency Catalogue of Non-thermal Sources, Y. Akrami, F. Argüeso, M. Ashdown et al., Astronomy & Astrophysics 619, A94, 2018.
  56. Planck intermediate results. LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect, N. Aghanim, Y. Akrami, M. Ashdown et al., Astronomy & Astrophysics 617, A48, 2018.
  57. 280 GHz Focal Plane Unit Design and Characterization for the Spider-2 Suborbital Polarimeter, A.S. Bergman, P.A.R. Ade, S. Akers et al., Journal of Low Temperature Physics 193, 1075, 2018.
  58. Cosmology and fundamental physics with the Euclid satellite, Luca Amendola, Stephen Appleby, Anastasios Avgoustidis et al., Living Review in Relativity 21, 2, 2018.
  59. Comparison of Einstein-Boltzmann solvers for testing general relativity, E. Bellini, A. Barreira, N. Frusciante et al., Physical Review D 97(2), 023520, 2018.
  60. Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters, N. Aghanim, Y. Akrami, M. Ashdown et al., Astronomy & Astrophysics 607, A95, 2017.
  61. A New Limit on CMB Circular Polarization from SPIDER, J. M. Nagy, P. A. R. Ade, M. Amiri et al., Astrophysical Journal 844(2), 151, 2017.
  62. The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters, Thibaut Louis, Emily Grace, Matthew Hasselfield et al., Journal of Cosmology and Astroparticle Physics 2017(06), 031, 2017.
  63. Planck intermediate results. L. Evidence for spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis, N. Aghanim, M. Ashdown, J. Aumont et al., Astronomy & Astrophysics 599, A51, 2017.
  64. Weakening Gravity on Redshift-Survey Scales with Kinetic Matter Mixing, Guido D'Amico, Zhiqi Huang, Michele Mancarella, Filippo Vernizzi, Journal of Cosmology and Astroparticle Physics 2017(02), 014, 2017.
  65. Marginalized Fisher Forecast for Horndeski Dark Energy Models, Jason S.-Y. Leung, Zhiqi Huang, International Journal of Modern Physics D 26(7), 1750070, 2017.
  66. Planck intermediate results. XLIX. Parity-violation constraints from polarization data, N. Aghanim, M. Ashdown, J. Aumont et al., Astronomy & Astrophysics 596, A110, 2016.
  67. Planck intermediate results. XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies, N. Aghanim, M. Ashdown, J. Aumont et al., Astronomy & Astrophysics 596, A109, 2016.
  68. Planck intermediate results. XLVII. Planck constraints on reionization history, R. Adam, N. Aghanim, M. Ashdown et al., Astronomy & Astrophysics 596, A108, 2016.
  69. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth, N. Aghanim, M. Ashdown, J. Aumont et al., Astronomy & Astrophysics 596, A107, 2016.
  70. Planck intermediate results. XLIV. The structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap, N. Aghanim, M. I. R. Alves, D. Arzoumanian et al., Astronomy & Astrophysics 596, A105, 2016.
  71. The Future of Primordial Features with Large-Scale Structure Surveys, Xingang Chen, Cora Dvorkin, Zhiqi Huang, Mohammad Hossein Namjoo, Licia Verde, Journal of Cosmology and Astroparticle Physics 2016(11), 014, 2016.
  72. Planck 2015 results. XX. Constraints on inflation, P. A. R. Ade, N. Aghanim, M. Arnaud et al., Astronomy & Astrophysics 594, A20, 2016.
  73. Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, P. A. R. Ade, N. Aghanim, M. Arnaud et al., Astronomy & Astrophysics 594, A17, 2016.
  74. Planck 2015 results. XVI. Isotropy and statistics of the CMB, P. A. R. Ade, N. Aghanim, Y. Akrami et al., Astronomy & Astrophysics 594, A16, 2016.
  75. Planck 2015 results. XIV. Dark energy and modified gravity, P. A. R. Ade, N. Aghanim, M. Arnaud et al., Astronomy & Astrophysics 594, A14, 2016.
  76. Planck 2015 results. XIII. Cosmological parameters, P. A. R. Ade, N. Aghanim, M. Arnaud et al., Astronomy & Astrophysics 594, A13, 2016.
  77. Planck 2015 results. I. Overview of products and scientific results, R. Adam, P. A. R. Ade, N. Aghanim et al., Astronomy & Astrophysics 594, A1, 2016.
  78. Observational effects of a running Planck mass, Zhiqi Huang, Physical Review D 93(4), 043538, 2016.
  79. Planck intermediate results. XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium, P. A. R. Ade, N. Aghanim, M. Arnaud et al., Astronomy & Astrophysics 586, A141, 2016.
  80. Revisiting the cosmological bias due to local gravitational redshifts, Zhiqi Huang, Physical Review D 91(12), 121301(R), 2015.
  81. Chameleons in the early Universe: Kicks, rebounds, and particle production, Adrienne L. Erickcek, Neil Barnaby, Clare Burrage, Zhiqi Huang, Physical Review D 89(8), 084074, 2014.
  82. Full cosmic microwave background temperature bispectrum from single-field inflation, Zhiqi Huang, Filippo Vernizzi, Physical Review D 89(2), 021302, 2014.
  83. Catastrophic Consequences of Kicking the Chameleon, Adrienne L. Erickcek, Neil Barnaby, Clare Burrage, Zhiqi Huang, Physical Review Letters 110(17), 171101, 2013.
  84. Cosmic Microwave Background Bispectrum from Recombination, Zhiqi Huang, Filippo Vernizzi, Physical Review Letters 110(10), 101303, 2013.
  85. A cosmology forecast toolkit - CosmoLib, Zhiqi Huang, Journal of Cosmology and Astroparticle Physics 2012(06), 012, 2012.
  86. Constraining inflation with future galaxy redshift surveys, Zhiqi Huang, Licia Verde, Filippo Vernizzi, Journal of Cosmology and Astroparticle Physics 2012(04), 005, 2012.
  87. Art of lattice and gravity waves from preheating, Zhiqi Huang, Physical Review D 83(12), 123509, 2011.
  88. Parameterizing and Measuring Dark Energy Trajectories from Late-Inflatons, Zhiqi Huang, J. Richard Bond, Lev Kofman, Astrophysical Journal 726(2), 64, 2011.
  89. Particle production during inflation: Observational constraints and signatures, Neil Barnaby, Zhiqi Huang, Physical Review D 80(12), 126018, 2009.
  90. Preheating after modular inflation, Neil Barnaby, J. Richard Bond, Zhiqi Huang, Lev Kofman, Journal of Cosmology and Astroparticle Physics 2009(12), 021, 2009.
  91. Non-Gaussian Curvature Spikes from Chaotic Billiards in Inflation Preheating, J. Richard Bond, Andrei V. Frolov, Zhiqi Huang, Lev Kofman, Physical Review Letters 103(7), 071301, 2009.
  92. Cosmological fluctuations from infrared cascading during inflation, Neil Barnaby, Zhiqi Huang, Lev Kofman, Dmitry Pogosyan, Physical Review D 80(4), 043501, 2009.
  93. Cosmological Constraints on Decaying Dark Matter, Santiago De Lope Amigo, William Man-Yin Cheung, Zhiqi Huang, Siew-Phang Ng, Journal of Cosmology and Astroparticle Physics 2009(06), 005, 2009.
其余预印本:
  1. [arxiv: 2402.01233] Forecast of foreground cleaning strategies for AliCPT-1, Junzhou Zhang et al..
  2. [arxiv: 2311.16903] Forecasting the BAO Measurements of the CSST galaxy and AGN Spectroscopic Surveys, Haitao Miao, Yan Gong, Xuelei Chen, Zhiqi Huang, Xiao-Dong Li, Hu Zhan.
  3. [arxiv: 2304.01112] Sum of digamma asymptotic error terms of an arithmetic series, Zhiqi Huang.
  4. [arxiv: 2004.08845] Design of a novel monolithic parabolic-mirror ion-trap to precisely align the RF null point with the optical focus, Zhao Wang, Ben-Ran Wang, Qing-Lin Ma, Jia-Yu Guo, Ming-Shen Li, Yu Wang, Xin-Xin Rao, Zhi-Qi Huang, Le Luo.
  5. [arxiv: 1803.11558] Equipartition Dark Energy, Weipeng Lin, Zhiqi Huang, Yiming Hu, Shuang Wang, Yi-Jung Yang.
  6. [arxiv: 1412.4671] Testing Inflation with Large Scale Structure: Connecting Hopes with Reality, Marcelo Alvarez, Tobias Baldauf, J. Richard Bond et al..
国际大会特邀报告:
  • 17-22, Nov, 2019, Kuching, Malaysia: 14 th Asia-Pacific Physics Conference 2019 (APPC-14), Statistics of Primordial Intermittent Non-Gaussianity
  • 5-8, Dec, 2016, Guangzhou, China: Sino-Germany Workshop on Galaxy and Cosmology, CMB Science: Present and Future
  • 7-8, Nov, 2013, IPhT, CEA/Saclay, France: CMB Second Order Workshop, Second Order Boltzmann Code
其余技能:
  1. 法语初级水平
  2. 熟练掌握 C, Fortran, python, php 等常用编程语言